

Why undergoing this examination?

Abort 5-10% of all cancers have a hereditary nature, indicating that there is some variation in germline cells that can be transmitted within a family lineage. Detecting variants in genes involved in hereditary cancer development indicates a higher risk of developing certain types of cancer throughout life.

What is the exam?

The Extended Cancer Panel test involves the analysis of 105 genes, providing the identification of point mutations, small insertions, and deletions related to hereditary cancer. Identifying a genetic susceptibility to cancer allows the physician to establish specific effective measures, not only in early detection but also in prevention.

For whom is it indicated?

- Patients diagnosed with cancer at an early age (<50 years);
- Patients with a family history suggesting hereditary cancer or with family members affected by cancer at an early age;
- · Patients affected by variors types of tumors;
- Patients with cancer who want to know its possible hereditary nature;
- Any patient who wants to know their genetic predisposition for hereditary cancer.

Technology

Next Generation Sequencing (NGS)

Advantages

SYNLAB GROUP

Guaranteed by the experience of the absolute European leader in laboratory diagnostics.

COMPLETE

- Identified alterations researched in the most complete and up-todate databases;
- Any pathogenic or uncertain significance variant is confirmed through a new DNA extraction and Sanger sequencing.

Extra Information

DOCUMENTATION – Available on the SYNLAB Direct for clients

- Informed Consent:
- Clinical Questionnaire:
- Family Medical History;
- Medical Request.

PREPARATION

• Fasting is not necessary for the exam.

Delivery Time

42 business days

Sample Type

10 mL of total blood in EDTA

Additional Information

Chec			enes analy	/zed in
Hereditary Cancer Panel				
ACD	DICER1	HNF1B	PALB2	SDHAF2
AKT1	DIS3L2	HOXB13	PDGFRA	SDHB
APC	EGLN1	KIF1B	PIK3CA	SDHC
ATM	EPCAM	KLLN	PMS1	SDHD
AXIN2	ERCC4	KRAS	PMS2	SEC23B
BAP1	FANCA	MAP3K6	POLD1	SLX4
BARD1	FANCB	MAX	POLE	SMAD4
BMPR1A	FANCC	MC1R	POT1	SMARCA4
BRCA1	FANCD2	MEN1	PRKAR1A	SMARCB1
BRCA2	FANCE	MET	PRSS1	SPINK1
BRIP1	FANCE	MITF	PTCH1	STK11
CDC73	FANCG	MLH1	PTCH2	SUFU
CDH1	FANCI	MRE11A	PTEN	TERT
CDK4	FANCL	MSH2	RAD50	TMEM127
CDKN1B	FANCM	MSH3	RAD51C	TP53
CDKN1C	FH	MSH6	RAD51D	TSC1
CDKN2A	FLCN	MSR1	RB1	TSC2
CFTR	GALNT12	MUTYH	RET	VHL
CHEK2	GPC3	NBN	RNF43	WRN
CTNNA1	GREM1	NF1	RPS20	WT1
CXCR4	HNF1A	NTHL1	SDHA	XRCC2